miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2

نویسندگان

  • Jianwen Wei
  • Yu Shi
  • Lihua Zheng
  • Bin Zhou
  • Hiroyuki Inose
  • Ji Wang
  • X. Edward Guo
  • Rudolf Grosschedl
  • Gerard Karsenty
چکیده

A screen of microRNAs preferentially expressed in osteoblasts identified members of the miR-34 family as regulators of osteoblast proliferation and/or differentiation. Osteoblast-specific gain- and loss-of-function experiments performed in vivo revealed that miR-34b and -c affected skeletogenesis during embryonic development, as well as bone mass accrual after birth, through two complementary cellular and molecular mechanisms. First, they inhibited osteoblast proliferation by suppressing Cyclin D1, CDK4, and CDK6 accumulation. Second, they inhibited terminal differentiation of osteoblasts, at least in part through the inhibition of SATB2, a nuclear matrix protein that is a critical determinant of osteoblast differentiation. Genetic evidence obtained in the mouse confirmed the importance of SATB2 regulation by miR-34b/c. These results are the first to identify a family of microRNAs involved in bone formation in vivo and to identify a specific genetic pathway by which these microRNAs regulate osteoblast differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-34s keep osteoblasts bone idle

miR-34s keep osteoblasts bone idle T he development of bone-forming osteoblasts is controlled by transcription factors such as Runx2, Osterix, and ATF4, which, in turn, are regulated by a variety of nuclear proteins that inhibit or activate these factors. miRNAs have also been implicated in osteoblast differentiation, though little is known about the effects of individual miRNAs on skeletogenes...

متن کامل

A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program.

Induced osteogenesis includes a program of microRNAs (miRs) to repress the translation of genes that act as inhibitors of bone formation. How expression of bone-related miRs is regulated remains a compelling question. Here we report that Runx2, a transcription factor essential for osteoblastogenesis, negatively regulates expression of the miR cluster 23a∼27a∼24-2. Overexpression, reporter, and ...

متن کامل

miR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting

Objective(s): MicroRNAs (miRNAs) are considered as powerful, post-transcriptional regulators of gene expression in hepatocellular carcinoma cells (HCC). However, the function of miR-92a is still unclear in HCC. Materials and Methods: Expression of miR-92a in human HCC cell lines was evaluated using qRT-PCR. MTT assay and transwell assay were used to examine the function of miR-92a in HepG2 and ...

متن کامل

Signaling and transcriptional regulation in osteoblast commitment and differentiation.

The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone forming, differentiating osteoblast cells. Osteoblast differentiation is the primary component of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Although not well understood, osteoblast differentiation from mesenchymal stem cells is a well-orches...

متن کامل

SATB2 Is a Multifunctional Determinant of Craniofacial Patterning and Osteoblast Differentiation

Vertebrate skeletogenesis involves two processes, skeletal patterning and osteoblast differentiation. Here, we show that Satb2, encoding a nuclear matrix protein, is expressed in branchial arches and in cells of the osteoblast lineage. Satb2-/- mice exhibit both craniofacial abnormalities that resemble those observed in humans carrying a translocation in SATB2 and defects in osteoblast differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 197  شماره 

صفحات  -

تاریخ انتشار 2012